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Exact and general solutions are obtained for the problem of radiant heat exchange 
of a sphere in a cavity. Radiation effects in such a system are analyzed. 

Techniques for high output production of monodispersed spherical particles and the use 
of such objects in a number of promising technological applications raises the question of 
study of the fundamental physical properties of microparticles, in particular, their radiant 
thermal characteristics. Since in the behavior of small size particles fine-scale effects 
which are usually neglected in the study of larger objects play a marked role, a sequential 
properly structured analysis of typical heat exchange situations is necessary. In connection 
with this it is of interest to consider the emission properties of a particle located in the 
center of an evacuated cavity, a situation often found in experimental practice (Fig. i). 
Analytical determination of the exact value of the radiant flux in such a gap is a quite 
complex problem and is normally based on the fluctuation method proposed in [i]. Omitting 
a description of the process of finding this solution, we will only present its final form: 

P~o = eco~Alo,~, ( 1 ) 

Alo ~o he~ 

% - -  (2m+ 1) m,,,~'-'~,~ _+ ~ . ,~ , .m ~ (3) 
2X6'~2 nz=l IFI,"I  z IF2, miz ) " 

Here we have introduced the following notation and abbreviations: 

1 0 1 0 
S ~ , m -  --lnp/p,m-- c.c; $8,~--  lnpjo,,~--c.c.  ; 
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( c . c .  and * d e n o t e  complex c o n j u g a t e s ) .  

E q u a t i o n s  ( 1 ) - ( 3 )  c o m p l e t e l y  d e s c r i b e  r a d i a n t  h e a t  exchange  in  a s p h e r i c a l  vacuum gap 
for arbitrary dimensions and parameters of the media participating in heat exchange. If 
instead of vacuum the gap is filled with another, but also transparent, medium (i.e., with 

(1)-(3) ~i, ~ and the entire expression (3) should be multiplied 
real gs, P s ) ,  then in Eq "2 respectively. 
by (es/Bs)I/2 and (es.Ps . . . . . . .  

We note that as follows from equations (1)-(3) in the case where the inner sphere 
is transparent (g, 1.1- real), heat exchange is absent regardless of the choice of cavity 
material (S~, S e vanish identically), while in the situation with a diathermal cavity (s l, 
~i - real) the flux does not vanish (S~, S~ do not vanish due to the presence of the com- 
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< ~,JiT,~ Fig. I. Heat exchange system: 
sphere-vacuum gap- concentric 
cavity. 

plex function h = j -- in, where i is the imaginary unit), i.e., the sphere radiates to 
"infinity." 

It is of definite interest to study the behavior of series (3) at r c = r. For this 
purpose we must take the asymptotes of the functions in Eq. (3) as m + ~ and determine the 
conditions for convergence. Making the necessary calculations we find that in order of mag- 
nitude as m § 

o(0)  F1, F i ~ m ;  S~,~o~,m mZI~(~)Im(~i) ,  S ~{o) ~ , , ~ . ~  .'.: mZlr,~ (e) I~ (81) , 

w h i l e  t h e  f i r s t  o f  t h e s e  r e l a t i o n s h i p s  i s  s a t i s f i e d  o n l y  when b o t h  c o r r e s p o n d i n g  h e a t  e x c h a n g e  
p a r a m e t e r s  e ,  e l  and  p ,  ~l o f  t h e  m e d i a  d i f f e r .  I n  t h e  o p p o s i t e  c a s e ,  i . e . ,  w h e r e  e = e i o r  

= Uz, t h e  f u n c t i o n  F 2 ( o r  F i )  v a n i s h e s  i d e n t i c a l l y  a s  m § ~ and t h e  s e r i e s  f o r m a l l y  d i -  
v e r g e s  (ew § ~ ) ,  w h i c h  i s  a c o n s e q u e n c e  o f  t h e  c h o i c e  o f  t h e  l o c a l  d i s p e r s i o n  d e p e n d e n c e  
e ( w ) .  I f  e ~ e i and  ~ : ~ i ,  t h e n  t h e  d i v e r g e n c e  a t  r = r c o f  s e r i e s  ( 3 )  a p p e a r s  i n  t h e  s i t u -  
a t i o n  w h e r e  b o t h  m e d i a  s i m u l t a n e o u s l y  h a v e  d i s s i p a t i v e  e l e c t r i c a l  o r  m a g n e t i c  p r o p e r t i e s ,  
i . e . ,  i m a g i n a r y  c o m p o n e n t s  o f  e i t h e r  e ,  e~ o r  U, 7 i  o r  a l l  f o u r  p a r a m e t e r s  a r e  s i m u l t a n e o u s l y  
n o n z e r o .  I f  t h e  d i s s i p a t i v e  p r o p e r t i e s  o f  b o t h  t h e  e l e c t r i c  and  t h e  m a g n e t i c  s o r t  d i s a p p e a r  
f r o m  t h e  s y s t e m  due  t o  one  o r  b o t h  m e d i a  t h e  d i v e r g e n c e  i s  e l i m i n a t e d .  However  i n  t h i s  c a s e  
a l t h o u g h  e w d o e s  n o t  f o r m a l l y  i n c r e a s e  w i t h o u t  l i m i t ,  i t  d o e s  i n c r e a s e  s i g n i f i c a n t l y  a s  r c + 
r .  C o n v e r g e n c e  o f  t h e  s e r i e s  a t  r c ~ r i s  i n s u r e d  due  t o  t h e  p r e s e n c e  i n  t h e  a s y m p t o t i c  
e x p a n s i o n s  F 1 and F 2 o f  t h e  f a c t o r  ( r c / r ) - m .  A b r u p t  i n c r e a s e  i n  t h e  i n t e n s i t y  o f  h e a t  e x c h a n g e  
f o r  a l l  f r e q u e n c i e s  u p o n  r e d u c t i o n  i n  t h e  s p h e r i c a l  gap  t o  t h e  p o i n t  o f  t a n g e n c y  i s  t o  be  e x -  
p e c t e d  i n  p r i n c i p l e ,  s i n c e  a ny  c l o s e l y  s p a c e d  c u r v e d  s u r f a c e s  c an  be  c o n s i d e r e d  p l a n o p a r a l l e l  
o v e r  s m a l l  s e c t i o n s ,  and  f o r  s u c h  p l a n a r  s t r u c t u r e s  t h e  r a d i a t i o n  i n t e n s i f i c a t i o n  e f f e c t  i s  
w e l l  known [2 ,  3 ] .  

We w i l l  now c o n s i d e r  t h e  q u e s t i o n  o f  p r e s e n c e  o f  r a d i a t i o n  r e s o n a n c e  i n  h e a t  e x c h a n g e  
t h r o u g h  a s p h e r i c a l  gap  f o r  t h e  c a s e  o f  a s m a l l  R a y l e i g h  s p h e r e ,  i . e . ,  f o r  x ~ 1; 9 ~ 1. 
P e r f o r m i n g  t h e  r e q u i r e d  a s y m p t o t i c  e x p a n s i o n s  and s i m p l i f y i n g ,  we f i n d  t h e  c o n d i t i o n  f o r  
v a n i s h i n g  o f  F~,  m: 

... nu -h,~(~ _ (2m + 1)',.. ( 2 m - -  1)!! (m~ -+- m + 1) 

jy 

and a similar condition for F2, m: 

,,L ( 0 )  ]y I_11 ,h 

(m -}- 1) (~ - -  1) x 2"*+1 

(2m -t- 1)!! (2m - -  1)!! (tn8 + m -~- 1) 

(m + 1) ( , -  1)x 2"~+~ 

(4) 

(s) 

(in equations (4), (5) the m summation index is omitted in the functions on the left sides). 

Knowing the concrete dispersion function g(w), ~(w), el(w), ~i(~), from Eqs. (4), (5) 
we can find the exact positions of spectral resonances. As x + 0 solutions (4), (5) contain 
within themselves together with the single frequency condition for appearance of surface 
resonance of the internal sphere e(~) = -(m + l)/m [or U(~) = -(m + l)/m] yet another collec- 
tive condition for matched interference excitation of the interacting cavity and sphere. The 
explicit and simple form of this collective resonance will be obtained below, after performing 
a number of numerical calculations, since direct analytical analysis of Eqs. (4), (5) is quite 
difficult. We can make some preliminary remarks as to factors affecting collective modes by 
evaluating the behavior of Eqs. (4), (5) at large y(y), Pi. There then appear within the 
expressions trigonometric (sin,. cos) functions of y with complex weight coefficients dependent 
on el, ~i. This indicates that spectral positions of collective thermal modes are a periodic 
series with a strong dependence of excitation intensity on permittivity of the cavity and 
sphere. Below we will confirm this proposition numerically. 
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Fig. 2. Spectral coefficient of sphere 
thermal radiation into cavity: a) B = 
i0 a, x = i; b) B = i0, x = 0.I; c) 
B = l0 s , x = 0.i; cavity parameters: a) 
6~=1 (1), 1--i (2), 1--102i (3); b )  e : = l  (1), 1--0,1i 
( 2 ) , 1 - - 1 0 i  (3), 1--10~i (4), 1--10ai (5), ~0-2--10-2i (6); 
c )  < = I  (1), 1--i (2), 10-~--10-2i (3), 1--I0~i (4), 
1--103i (5) . 

The appearance of matched excitation upon sphere radiation into the surrounding cavity 
is completely explicable on the basis of the wave concept of heat transport. The Rayleigh 
sphere can be considered a point object compared to the wavelength X, r ~ X. For reciprocal 
radiation of the sphere and cavity one to the other some interference pattern will be formed, 
which will have a more clearly expressed character at half-wave (or wave) integral conditions 
known from diffraction theory for radiation to the wall (cavity), while the choice of full or 
half wavelength is determined by the boundary matching conditions for electromagnetic fields 
on the wall (i.e., the minimum of the parameters el, ~m)- Nevertheless in the given case we 
are dealing not with pure interference of wave fields in the normal meaning of the term, since 
conventional interference and diffraction are a spatial (over angles) distribution of field 
minima and maxima. In our case we have alternating maxima and minima of a radially directed 
thermal flux with change in the gap value T. 

Equation (3) was calculated by computer assuming a nonmagnetic sphere and cavity, i.e., 
for ~(~) = ~l(~) = I, with the approximation e(~) = l--iB/x, B=4~• Some of the results ob- 
tained for the sphere radiation coefficient into the cavity as a function of gap size are 
shown in Fig. 2. Analysis of the numerical data permits the following conclusions. 

i. The above proposition of presence of an abrupt increase in spectral flux at any fre- 
quency, and, consequently, the full integral flux at limitingly small gap values x is con- 
firmed. For any values of sphere and cavity thermophysical parameters there is an obligatory 
intensification of heat exchange as the objects approach tangency, but the critical distance 
Ycr beginning at which this phenomenon is observed, depends to some degree on the parameters 
x, B, e l, although it may be estimated approximately as A r c r = r c - - r ~ O , l ~ w ( T m i n ) ,  where XW(Tmi n) 
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is the Wien wavelength at the temperature of the colder body, which agrees completely with the 
data of [4, 5]. The physical justification of this situation consists of the following: ac- 
cording ot the conclusions of [I], near any heated body there exists some layer, the "thermal 
coat" of high thermal energy density created by the steady state component and standing waves 
of the fluctuation field. As two objects approach, beginning at some distance their "thermal 
coats" begin interacting and readjust themselves to the newly created situation. A portion 
of the standing modes having very high fluctuation field electromagnetic energy density tunnel 
and are now distributed within the closely neighboring bodies, intensifying their responses 
to an external perturbation, which leads to subsequent intensification of heat liberation. 

2. As is evident from Fig. 2, in the region of small diffraction parameters (x ~ I0) 
the character of the change in e~ is close to ideally periodic, differing totally from the 
behavior of the classical monotonic dependence. For x > 10 the "ripple" predominates in the 
behavior of em(y) due to excitation of modes of Eq. (3) of higher order than m = i. It is 
important to note that the mean value of e w about which e~(u varies periodically as y § ~ 
is determined not only by the parameters of the inner sphere but also the parameters of the 
surrounding cavity. This is especially significant when the characteristics of the cavity ma- 
terial differ significantly from that of the material filling the gap (in our case, a vacuum). 
For low cavity absorptions (IImell ~ < i-i0) e~ differs little from e~,~ the radiation coeffi- 
cient of an isolated sphere into a vacuum [i], while for high absorptions this difference 

0 The periodicity of e~(u and the presence is quite marked, a reduction occurring: ew < E~. 
of quite intense maxima and minima in heat exchange at a given frequency x must be considered 
in practical applications for optimization of spatial arrangements, especially when the role 
of spectral flux components is great. As for the total integral of the flux over frequency, 
it retains the dimensional effect of intensified heat transport in narrow gaps, while the 
intense periodicity with respect to u apparently disappears because of smoothing of the Planck 
functions upon integration. Nevertheless, existence of individual isolated shallow minima 
and slight maxima in the total radiation is possible as y § 1 or there may be a rapidly damp- 
ing oscillating character to ein t as y § ~. 

3. In the Eayleigh region x ~ 1 and for any B, e I in complete correspondence to the 
above explanation heat exchange through the spherical gap takes on resonant attributes - for 
certain ratios between X and r c abrupt collective excitations of heat transport intensity 
develop. The numerical data permit proposal of a simple expression for the positions of 
these resonances, namely 

2r~ ~ p}, t2 (6) 

o r  

x '~pa/2 ,  p = 2 ,  3, 4, ...,  (7) 
where the approximate equality is replaced by ever more accuracy with increase in p, namely: 
the first resonance with p = 2 appears at xy = 2.6-2.7, the second (p = 3) at xy = 4.4-4.5, 
the third, at xu = 6.0-6.1, the fourth, at xy = 7.6-7.7, the fifth, at x7 = 9.2-9.3, etc. 
The resonances noted in Fig. 2 for x < 1 are produced by excitation in Eq. (3) of only the 
fundamental m = i, while the excitations of other harmonics will also obey Eqs. (6), (7) but 
are significantly sharper and less intense. In essence Eqs. (6), (7) are matching condi- 
tions, upon satisfaction of which the greatest interference effect develops in a cavity 
containing a point Rayleigh particle, if the cavity diameter consists of an integral multiple 
of half or full wavelengths of the thermal modes. The mode with 2r c = ~/2 disappears due to 
the "thermal coat" effect of the sphere and cavity [i]. 

A noteworthy property of the collective heat exchange resonances in the spherical gap is 
the fact that the intensity of the excitations in Eqs. (6), (7) for the series with p = 2k 
and p = 2k + i, k = i, 2, 3,..., will depend intensely on the electromagnetic parameters of 
the cavity and sphere (in our calculations, upon El and B). For small values of B (B ~ i0) 
the intensity of excitations of both series is identical for any El, while for higher B values 
(B > I0) only the first series is more intensely excited, and if Iezl is small only the 
series p = 2k is excited, while if IEll ~ 1 the series with p = 2k + 1 dominates; for fell ~ 
1 both series are practically unexcited. Thus, by changing the cavity absorption parameters 
the resonant spectral structure of radiant heat exchange can be retuned. 

We will also note that in contrast to the behavior of resonant peaks in the radiation 
of a particle lattice [6], in the case of heat exchange through a spherical gap all reso- 
nances do not have an attenuating branch, i.e., at the resonance points only amplification of 
radiation occurs. 
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In conclusion we note that the value of the precise form of Eq. (3) for the spectral com- 
ponents of the radiation flux in principle permits finding the total flux by simple numerical 
integration. However performing such detailed calculations requires a high speed wide bus 
computer. 

NOTATION 

m, frequency; k, wavelength; c, speed of light; kB, Boltzmann's constant; T, tempera- 
ture; h~, Planck's constant; r, radius; s, dielectric permittivity; p, magnetic permeability; 
K, conductivity; Pm, spectral thermal flux; em, spectral radiation coefficient of sphere into 
cavity; x, diffraction parameter; y, ratio of cavity radius to particle radius; i, imaginary 
unit; j, n, h = h (2), spherical Bessel functions of the first, second, and third sorts. 
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BEHAVIOR OF MONODISPERSED METAL PARTICLES IN VARIOUS MEDIA 

A. V. Suslov, E. L. Dreizin, 
and M. A. Trunov 

UDC 621.762 

Processes determining the final properties of monodispersed metallic microgranules 
are considered. 

At present the problem of producing monodispersed metallic systems with special properties 
is of great practical importance. One of the methods used to produce such systems is high 
speed cooling of dispersed materials in order to amorphize them, thus producing special prop- 
erties. Amorphous metal structures are widely used to produce dispersed systems with a char- 
acteristic dimension of ~i0 -s m, and are created at cooling rates of 104-106 K/sec, which can 
be achieved by interaction of the objects to be cooled with gaseous or solid media. 

In analyzing factors which lead to high cooling rates, we must note the following major 
ones: contact area, temperature difference between cooling surface and surface being cooled, 
and thermal conductivity of the material. For a moving metallic microparticle its velocity 
and temperature are important characteristics controlling the cooling rate (since they in- 
fluence the contact area), so that it is important to provide a correct mathematical de- 
scription of processes in order to model the behavior of high temperature dispersed metal 
systems upon their interaction with various media. 

The present study will attempt to consider the possibiity of amorphization of metallic 
dispersed systems with characteristic dimensions of 10 -4 m. To solve this problem we will 
analyze the motion of high temperature (T~1000--2000~ metal (Cu, Mo) microparticles in air 
and their cooling rate on a copper substrate. The high temperature metal particles were gen- 
erated by the pulsed arc method [i]. The coefficient of microgranule variation over size did 
not exceed 5%. Figure i shows copper microgranules 140 pm in radius, obtained by this method. 

The change in temperature (brightness method) and velocity of the newly formed micro- 
granules was determined as they moved along the vertical axis. The microparticle velocity 
v = h/t r was determined by photographic recording of particle motion through a chopper with 

I. I. Mechnikov State University, Odessa. Translated from Inzhenerno-fizicheskii Zhur- 
nal, Vol. 60, No. 4, pp. 620-625, April, 1991. Original article submitted July 31, 1990. 

472 0022-0841/91/6004-0472512.50 �9 1991 Plenum Publishing Corporation 


